Zwei unbekannte Zahlen und alle vier Rechenarten

HELMUT MALLAS

Online-Ergänzung

HELMUT MALLAS

Zwei unbekannte Zahlen und alle vier Rechenarten

Gesucht sind zwei natürliche Zahlen. Bildet man ihre Summe, ihre Differenz, ihr Produkt und ihren Quotienten und addiert diese vier Terme, erhält man 196.

- a) Bestimme alle Lösungen.
- b) Formuliere Bedingungen, die dazu führen, dass die Lösung eindeutig ist und bewerte diese Bedingungen. Nenne weitere Zahlen, die anstelle der Zahl 196 unter den gleichen Bedingungen zu einer eindeutigen Lösung führen.

2

Lösung

a) Man kann z.B. durch systematisches Probieren Lösungen finden. Weil für die Subtraktion und für die Division kein Kommutativgesetz gilt, sind die beiden Zahlen nicht gleichberechtigt. Als Subtrahend spielt die zweite Zahl keine Rolle, aber als Divisor. Das spricht dafür, die zweite Zahl systematisch zu verändern und die erste Zahl passend zu suchen. Damit sich eine natürliche Zahl wie 196 ergibt, muss die erste Zahl ein Vielfaches der zweiten sein.

а	b	a+b	a-b	$a \cdot b$	a:b	Σ
49	1	50	48	49	49	196
42	2	44	40	84	21	189
44	2	46	42	88	22	198
36	3	39	33	108	12	192
39	3	42	36	117	13	208
28	4	32	24	112	7	175
32	4	36	28	128	8	200
25	5	30	20	125	5	180
30	5	35	25	150	6	216
24	6	30	18	144	4	196
21	7	28	14	147	3	192
28	7	35	21	196	4	256
16	8	24	8	128	2	162
24	8	32	16	192	3	243
9	9	18	0	81	1	100
18	9	27	9	162	2	200
20	10	30	10	200	2	242
30	10	40	20	300	3	363
11	11	22	0	121	1	144
22	11	33	11	242	2	288
12	12	24	0	144	1	169
24	12	36	12	288	2	338
13	13	26	0	169	1	196
0	14	14	-14	0	0	0
14	14	28	0	196	1	225
0	15	15	-15	0	0	0
15	15	30	0	225	1	256

Tab. 1. Lösung durch systematisches Probieren

Bereits die erste Zeile führt auf eine Lösung. In den nächsten Zeilen verfehlt die Summe den Wert 196. Sofern es keine Lösung gibt, sind für jeden Wert von *b* jeweils die beiden Werte von *a* angegeben, mit denen sich eine ganzzahlige Summe ergibt, die die 196 gerade über- bzw. unterschreitet. Mit anderen Werten der ersten Zahl wäre es zwar möglich, näher an die 196 zu gelangen, aber nicht ganzzahlig.

Durch diesen Verzicht auf eine bessere, aber nicht ganzzahlige Annäherung wird erkennbar, wann man die Suche einstellen kann: bei der Lösung a = 13, b = 13.

Ist b größer als 13, ergibt sich für den zu kleinen Wert von a nur noch $0 \cdot b$, womit a keine natürliche Zahl mehr ist. Das nächstgrößere Vielfache von b ist $1 \cdot b$. Dieser Wert von a ist schon zu groß; damit ergeben sich oberhalb von 13 nur noch Quadratzahlen größer als 196. Es kann also jenseits der Lösung a = 13, b = 13 keine weiteren Lösungen mehr geben.

Gezielter lassen sich die Lösungen mit einer Gleichung bestimmen. Seien *a* und *b* die beiden natürlichen Zahlen. Dann ist

$$(a+b)+(a-b)+a\cdot b+\frac{a}{b}=196.$$

Das vereinfacht sich zu

$$2a + a \cdot b + \frac{a}{b} = 196$$

und auf den gleichen Nenner gebracht

$$\frac{2ab+a\cdot b^2+a}{b}=196,$$

Ausklammern ergibt

$$\frac{a \cdot (2b + b^2 + 1)}{b} = 196$$

und mit der ersten binomischen Formel

$$\frac{a\cdot (b+1)^2}{b} = 196.$$

Die Primfaktorzerlegung von 196 ist $196 = 2^2 \cdot 7^2$.

а	b	
49	1	$\frac{49\cdot 2^2}{1} = 196$
24	6	$\frac{24 \cdot 7^2}{6} = 196$
13	13	$\frac{13 \cdot 14^2}{13} = 196$

Tab. 2. Algebraische Lösung

Quadratzahl		b	
$36 = 2^2 \cdot 3^2$	8	2	$\frac{8\cdot 3^2}{2} = 36$
$100 = 2^2 \cdot 5^2$	16	4	$\frac{16 \cdot 5^2}{4} = 100$
$196 = 2^2 \cdot 7^2$	24	7	$\frac{24 \cdot 7^2}{6} = 196$
$484 = 2^2 \cdot 11^2$	40	10	$\frac{40 \cdot 11^2}{10} = 484$
:	:	:	:
$225 = 3^2 \cdot 5^2$	36	4	$\frac{36\cdot 5^2}{4} = 225$
$441 = 3^2 \cdot 7^2$	54	6	$\frac{54 \cdot 7^2}{6} = 441$
:	•		

Tab. 3. Gleiche Aufgabenstellung für Quadratzahlen, die in zwei verschiedene Primzahlen in zweiter Potenz zerlegt werden können

Die Tabelle zeigt die Lösungen. Auch bei diesem Lösungsweg bleibt noch zu zeigen, dass dies die einzigen Lösungen sind. Der Zähler $a \cdot (b+1)^2$ muss die Primfaktoren der Zahl 196 enthalten. Dabei kann der Faktor $(b+1)^2$ nur die Werte 7^2 oder 2^2 oder $2^2 \cdot 7^2$ annehmen. Der Wert 1 ist nicht möglich, weil dann b=0 wäre. Der Faktor $(b+1)^2$ kann auch keine anderen Primfaktoren außer 2 und 7 enthalten, weil sich diese nur durch Kürzen mit b eliminieren ließen. Es gibt aber nur eine einzige Möglichkeit, dass $(b+1)^2$ durch b teilbar ist, nämlich b+1=2 und b=1; für alle größeren Werte von b ergibt $\frac{b+1}{b}$ keine ganze Zahl als Quotient, sondern eine rationale Zahl, die sich von 2 kommend der Zahl 1 annähert. Der Zähler muss um den Faktor b größer sein als 196, damit sich durch Kürzen 196 ergibt, also $a \cdot (b+1)^2 = b \cdot 196$. Dieser Faktor muss in \Box enthalten sein. Auflösen nach \Box ergibt

$$a = \frac{b \cdot 196}{\left(b+1\right)^2}.$$

b) Durch geeignete Formulierungen lässt sich jede der drei Lösungen eindeutig machen, in der Reihenfolge von oben nach unten z.B. "genau eine der beiden Zahlen ist eine Quadratzahl", "die beiden Zahlen sollen verschieden und größer als 1 sein", "die beiden Zahlen sollen gleich sein". Am besten ist dabei die mittlere Formulierung, denn sie verrät am wenigsten über die Lösung.

Anstelle der Zahl 196 sind alle Quadratzahlen geeignet, die je zwei verschiedene Primfaktoren in zweiter Potenz enthalten. Wenn man b = 1 und a = b ausschließt, ist bei diesen Quadratzahlen nur die in der Tabelle dargestellte Aufteilung der Primfaktoren möglich.

Diese Aufgabe entstammt einer Aufgabensammlung der Arbeitsgemeinschaft "Mathema", die für Schülerinnen und Schüler der Klassen 7 bis 10 in Schleswig-Holstein an Gymnasien und Gemeinschaftsschulen angeboten wird (htt p://www.mathema.

math.uni-kiel.de).

HELMUT MALLAS, Helmutmallas@t-online.de